Cadmium toxicity toward autophagy through ROS-activated GSK-3beta in mesangial cells.

نویسندگان

  • Sheng-Hao Wang
  • Yung-Luen Shih
  • Tai-Chin Kuo
  • Wun-Chang Ko
  • Chwen-Ming Shih
چکیده

We previously demonstrated that cadmium (Cd) is able to induce autophagic cell death through a calcium-extracellular signal-regulated kinase pathway. Here, the object of this study is to investigate the role of glycogen synthase kinase-3beta (GSK-3beta) in the induction of autophagy. After treatment with Cd, MES-13 mesangial cells were determined to have undergone autophagy based on the formation of acidic vesicular organelles and autophagosomes as well as on the processing of microtubule-associated protein 1 light chain 3, using flow cytometry with acridine orange staining, electron microscopy, and immunoblot, respectively. Use of the GSK-3beta inhibitor SB 216763 or the small interfering RNA technique to knockdown the expression of GSK-3beta resulted in a decrease of Cd-induced autophagy. In contrast, overexpression of GSK-3beta by transient transfection potentiated Cd toxicity toward the mesangial cells, suggesting that GSK-3beta plays a crucial role in regulating Cd-induced autophagy. Moreover, a decrease of the phosphorylated level at Ser9 of GSK-3beta was observed by immunoblot after treatment with Cd, indicating GSK-3beta was activated by Cd. This phenomenon was reversed by the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC), demonstrated that ROS might activate GSK-3beta. In fact, intracellular hydrogen peroxide (H(2)O(2)) was 2.6-fold elevated after 3 h of exposure to Cd. Both Cd-induced ROS bursts and autophagy were reduced by NAC and vitamin E. In summary, this study demonstrated that, in MES-13 mesangial cells, Cd-induced autophagy was mediated through the ROS-GSK-3beta signaling pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proteomic Identification of 14-3-3ζ as an Adapter for IGF-1 and Akt/GSK-3β Signaling and Survival of Renal Mesangial Cells

Recently we demonstrated that IGF-1 expression is increased in the diabetic kidney and that it may involve in renal hypertrophy and extracellular matrix protein (ECM) accumulation in mesangial cells as seen in diabetic glomerulopathy. The present study investigates the molecular mechanism(s) of IGF-1 and Akt/glycogen synthase kinase-3beta (GSK-3beta) signaling pathway in the regulation of fibro...

متن کامل

GSK-3beta promotes cell survival by modulating Bif-1-dependent autophagy and cell death.

Glycogen synthase kinase 3 beta (GSK-3beta) is constantly active in cells and its activity increases after serum deprivation, indicating that GSK-3beta might play a major role in cell survival under serum starvation. In this study, we attempted to determine how GSK-3beta promotes cell survival after serum depletion. Under full culture conditions (10% FBS), GSK-3beta inhibition with chemical inh...

متن کامل

مروری بر کنترل اتوفاژی به وسیله ROS (گونه های فعال اکسیژن )

    ROS (Reactive Oxygen Species) are small, short-lived and highly reactive molecules that can oxidize proteins, lipids and DNA. ROS are formed by incomplete one-electron reduction of oxygen. ROS include oxygen anions, free radicals, including superoxide and hydroxyl radicals, and peroxides such as hydrogen peroxide (H2O2).  Autophagy is a catabolic pathway for degradation ...

متن کامل

Glycogen synthase kinase-3beta induces neuronal cell death via direct phosphorylation of mixed lineage kinase 3.

Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase member that activates the c-Jun N-terminal kinase (JNK) pathway. Aberrant activation of MLK3 has been implicated in neurodegenerative diseases. Similarly, glycogen synthase kinase (GSK)-3beta has also been shown to activate JNK and contribute to neuronal apoptosis. Here, we show a functional interaction between ML...

متن کامل

Exogenous zinc protects cardiac cells from reperfusion injury by targeting mitochondrial permeability transition pore through inactivation of glycogen synthase kinase-3beta.

The purpose of this study was to determine whether exogenous zinc prevents cardiac reperfusion injury by targeting the mitochondrial permeability transition pore (mPTP) via glycogen synthase kinase-3beta (GSK-3beta). The treatment of cardiac H9c2 cells with ZnCl2 (10 microM) in the presence of zinc ionophore pyrithione for 20 min significantly enhanced GSK-3beta phosphorylation at Ser9, indicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicological sciences : an official journal of the Society of Toxicology

دوره 108 1  شماره 

صفحات  -

تاریخ انتشار 2009